metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Akella Sivaramakrishna, Hong Su and John R. Moss*

Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa

Correspondence e-mail: john.moss@uct.ac.za

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.006 Å R factor = 0.027 wR factor = 0.051 Data-to-parameter ratio = 16.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $[PtBrH(C_{18}H_{15}P)_2]$, has a square-planar environment around the Pt atom, with the hydride and bromide ligands being exactly collinear with Pt since they all lie on a crystallographic twofold rotation axis, and with mutually *trans* triphenylphosphine ligands with a P-Pt-P bond angle that is slightly bent towards the hydride $[P-Pt-P = 170.81 (5)^{\circ}]$. The Pt-H distance (1.610 Å) is in good agreement with those found in structures determined by neutron diffraction.

Comment

The preparation of the title compound, *trans*-[HPtBr(PPh₃)₂], (I), was reported initially by Carr *et al.* (1985). It has also been prepared from the hydrolysis of either the platinum(II) boryl complex, *trans*-Pt(PPh₃)₂[B(Mes)Br]Br (Mes = 2,4,6-Me₃C₆H₂) (Aldridge *et al.*, 2003), or the alkoxycarbonyl, [PtX(COOR)(PPh₃)₂] (where R = Me or Et, X = halide), in the presence of a salt catalyst (NH₄X or KX, X = halide), giving *trans*-[PtHX(PPh₃)₂] (Clark *et al.*, 1969). The X-ray single-crystal structures of the toluene monosolvated title compound (Habereder & Nöth, 2003) and of the toluene hemisolvated title compound (Aldridge *et al.*, 2003) were reported recently. We have now prepared and characterized the unsolvated title compound, (I) (Fig. 1), from decomposition of (PPh₃)₂Pt(1-pentenyl) (see equation below), and present the results here.

Compound (I) crystallizes in the space group C2/c with Z = 4. The molecule is located at a special position at Wyckoff position e, with a twofold rotation axis running through the linear Br-Pt-H group. This results in *trans*-oriented triphenylphosphine ligands, with P-Pt-P [bond angle 170.81 (5)°] being slightly bent towards the hydride. The Pt-P distance of 2.2827 (9) Å and the Pt-Br distance of 2.5229 (6) Å are within the accepted ranges for similar platinum(II) complexes (Orpen *et al.*, 1989). The Pt-H distance is 1.61 Å. A search of the Cambridge Structural Database (CSD, Version 5.27 with August 2006 updates; Allen, 2002) for platinum(II) complexes with terminal hydrides gave rise to 65 hits. For all 65 complexes, Pt-H(terminal) distances range from 1.00 to 2.153 Å, with a median value of 1.626 Å and a mean value of 1.628 Å. In a search of all the platinum

© 2007 International Union of Crystallography All rights reserved Received 5 December 2006 Accepted 11 December 2006

Figure 1

The molecular structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented by circles of arbitrary size.

complexes in the CSD, two structures with terminal hydrides had been determined by neutron diffraction and their Pt-H(terminal) distances are 1.549 Å (CSD refcode WAZPUI01; Albinati et al., 1997) and 1.610 Å (CSD refcode CAKNEH01; Chiang et al., 1984), respectively. Therefore, the Pt-H distance of 1.61 Å found for structure (I) is very reasonable. The salient bond lengths and angles are listed in Table 1.

Experimental

Compound (I) was prepared from a dichloromethane solution of cis-[Pt(1-pentenyl)Br(PPh₃)₂] on exposure to air (Sivaramakrishna & Moss, 2006). This is probably due to the breaking of the M-C bond through β -hydride elimination to form the Pt-H bond, and also isomerization from cis to trans (see scheme). ¹H NMR showed the Pt-H signals as a triplet at -14.8 p.p.m. with platinum satellites (J_{Pt-} $_{\rm H}$ = 1240 Hz and $J_{\rm P-H}$ = 25.6 Hz). ³¹P NMR indicated a singlet at 28.8 p.p.m. with platinum satellites (J_{Pt-P} = 2988 Hz). A solution cis-(PPh₃)₂Pt(CH₂CH₂CH₂CH=CH₂)Br containing (0.168 g. 0.193 mmol) in CH₂Cl₂ (20 ml) was exposed to air for three weeks. Removal of the solvent in high vacuum and recrystallization from a mixture of CH₂Cl₂ and *n*-hexane (1:1 ν/ν) led to the isolation of the title compound, (I), as colourless crystals (0.098 g, 63%).

Crystal data

$[PtBrH(C_{18}H_{15}P)_2]$	Z = 4
$M_r = 800.55$	$D_x = 1.694 \text{ Mg m}^{-3}$
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 15.2835 (2) Å	$\mu = 5.87 \text{ mm}^{-1}$
b = 9.5241 (1) Å	T = 173 (2) K
c = 22.5045 (4) Å	Needle, colourless
$\beta = 106.618 \ (1)^{\circ}$	$0.08 \times 0.07 \times 0.04~\mathrm{mm}$
V = 3138.97 (8) Å ³	
Data collection	

ata collection

Nonius KappaCCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\min} = 0.651, T_{\max} = 0.799$

37736 measured reflections 3048 independent reflections 2705 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.081$ $\theta_{\rm max} = 26.0^\circ$

Refinement

Table 1

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0152P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.028$	+ 11.9998P]
$wR(F^2) = 0.051$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
3048 reflections	$\Delta \rho_{\rm max} = 1.27 \ {\rm e} \ {\rm \AA}^{-3}$
183 parameters	$\Delta \rho_{\rm min} = -1.21 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97 (Sheldrick, 1997)
	Extinction coefficient: 0.00053 (4)

rubic i					
Selected	geometric	parameters	(Å,	°)	۱.

Pt1-P1	2.2827 (9)	P1-C1	1.817 (4)
Pt1-Br1	2.5229 (6)	P1-C7	1.833 (4)
Pt1-H1	1.61	P1-C13	1.825 (4)
$P1-Pt1-P1^{i}$	170.81 (5)	C7-P1-Pt1	113.4 (1)
Br1-Pt1-H1	180	C13-P1-Pt1	115.5 (1)
P1-Pt1-Br1	94.60 (2)	C1-P1-C13	104.5 (2)
P1-Pt1-H1	85	C1-P1-C7	104.8 (2)
C1-P1-Pt1	113.3 (1)	C13-P1-C7	104.2 (2)

Symmetry code: (i) -x, y, $-z + \frac{3}{2}$.

Aromatic H atoms were placed in idealized positions in a riding model, with C-H = 0.95 Å, and refined with $U_{iso}(H) = 1.2U_{ea}(C)$. The hydride atom (H1) was located in a difference electron-density map and refined with the constraint $U_{iso}(H1) = U_{eq}(Pt1)$. The highest peak is located 0.65 Å from atom Pt1 and the deepest hole 0.03 Å from Pt1.

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97.

The authors thank Johnson Matthey (London), Anglo Platinum Corporation, University of Cape Town for the financial support.

References

- Albinati, A., Bracher, G., Carmona, D., Jans, J. H. P., Klooster, W. T., Koetzle, T. F., Macchioni, A. Ricci, J. S., Thouvenot, R. & Venanzi, L. M. (1997). Inorg. Chim. Acta, 265, 255.
- Aldridge, S., Coombs, D. & Jones, C. (2003). Acta Cryst. E59, m584-m585.
- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Carr, S. W., Shaw, B. L. & Thornton-Pett, M. (1985). J. Chem. Soc. Dalton Trans. pp. 2131-2137.
- Chiang, M. Y., Bau, R., Minghetti, G., Bandini, A. L., Banditelli, G. & Koetzle, T. F. (1984). Inorg. Chem. 23, 122.
- Clark, H. C., Dixon, K. R. & Jacobs, W. J. (1969). J. Am. Chem. Soc. 91, 1346-1350.
- Habereder, T. & Nöth, H. (2003). Appl. Organomet. Chem. 17, 525-538.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989) J. Chem. Soc. Dalton Trans. pp. S1-83.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany,
- Sheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.
- Sivaramakrishna, A. & Moss, J. R. (2006). In preparation.